Semester 7


Course: Queuing Systems



Course Code: Ε9
Course Level: Undergratuate
Obligatory/Elective: Elective
Semester: 7
Division: Division of Telecommunications
Group: Group A
ECTS Credits: 5
Hours Per Week: 4
Website: eclass.uowm.gr/courses/ICTE176/
Language: Greek
Content:

An Introduction to Queues and Queueing Theory. Study and Evaluation Techniques for Queueing Systems, Telecommunication and Computational Model Systems. Little’s Law. Basic Queueing Theory - I (Analysis of M/M/-/- Type Queues), Basic Queueing Theory - II (Departures, Method of Stages, Batch Arrivals), Birth-Death Processes. Analysis of the simple M/M/1 and M/G/1 Queue. M/M/1/N Queues and Multi-Server Systems : M/M/m, M/M/m/K, M/M/m/m (Erlang – B). Applications and Simulation to Packet Scheduling in High-Speed Networks and Modern Wireless Networks.

Learning Outcomes:
  • to understand of the aims, use, and functionality of queuing systems.
  • to perceive and utilize the Little’s Law.
  • to comprehend the discrete and continuous time Marcov Chains.
  • to perceive the use and functionality of the birth-death model.
  • to analyze and resolve Μ/Μ/-/- queuing systems.
  • to analyze and resolve multiple-server and generic queueing systems.
  • to develop simulation programs in order to study and evaluate various queuing systems.
  • to apply and implement queuing systems in the context of modern communication networking.
Pre-requirements:

None

Teaching Methods:

Lectures, Programming Tasks

Validation:

Written final exam (70%), Programming Tasks (30%)

Suggested Books:
  • Δ. Φακίνος, Ουρές Αναμονής, Εκδόσεις Συμμετρία, 2008.
  • Ι. Τρύφων, Π. Δάρας, Θ. Συψάς, Στοχαστικές Ανελίξεις, Εκδόσεις Ζήτη, 2003.
  • Χούχουλας, Θεωρία Αναμονής, Εκδόσεις Συμμετρία, 2008.
  • Κοκολάκης Σπηλιώτης, Θεωρία Πιθανοτήτων και Στατιστική με Εφαρμογές, Εκδόσεις Συμεών, 2010.
  • L.Kleinrock, “Queueing systems; volume 1: theory”, J. Wiley & Sons, New York, 1975.
  • R.Wolf, “Stochastic modelling and the theory of queues”, Prentice-Hall, Englewood Cliffs, NJ, 1989.
  • A. Allen, “Probability Statistics and Queuing Theory with Computer Science Applications, second edition, Academic Press Inc., 1990.
  • NG. Chee-Hock, S. Boon-Hee, Queuing Modelling Fundamentals With Applications in Communication Networks, second edition, Wiley, 2008.
Lecturer: Sarigiannidis Panagiotis