Numerical Analysis

Numerical Analysis

Course Code: MK26-Η
Course Level: Undergratuate
Obligatory/Elective: Obligatory
Semester: 4
Division: Main Course
Group: Main Course
ECTS Credits: 4
Hours Per Week: 4
Website: eclass.uowm.gr/courses/ECE381/
Language: Greek
Content:

• Introduction to Numerical Analysis, Numerical Systems, Representation of Numbers,
Conversions, Floating – point numbers, Errors, Absolute and relative error, Propagation of
uncertainty, Accuracy.
• Linear Systems, Linear System Solving, Cramer’s Rule, Gauss Method, Gauss – Jordan
Method, Thomas’ algorithm, LU decomposition, Cholesky decomposition
• Iterative Methods for Solving Linear Systems, Convergence Conditions, Jacobi method,
Gauss – Seidel method.
• Solving nonlinear equations and systems, Roots of nonlinear equations, Long Division,
Bisection method, Newton Raphson method, Intersection method, Nonlinear System
Solving.
• Numerical integration, Rectangle method, Simpson’s 1/3 rule, Simpson’s 3/8 rule,
Composite functions.
• Interpolation and Extrapolation, Numerical Approach, Polynomial interpolation, Lagrange
polynomial, Newton polynomial, Least squares.
• Solving first order linear differential equations, Euler Method, Runge – Kutta Method.

Learning Outcomes:

Upon successful completion of this course, students will be able:
• to understand the basic arithmetic methods.
• to estimate the advantages and disadvantages of the methods.
• to distinguish the differences between the methods in order to choose the most
appropriate one for the problem they are called to solve.
• to design and develop mathematical modeling and numerical analysis algorithms.
• to compose and / or use appropriate software to implement the required application.
• to explain the results of different methods based on absolute and relative errors.
• to evaluate and compare Numerical Analysis methods.
• to judge the appropriateness of each arithmetic method in specific problems.

Pre-requirements:

Mathematical Analysis I , II, Applied Mathematics,
Introduction to Structured Programming

Teaching Methods:
Method Description Semester Workload
Lectures 26
Laboratory practice 26
Essay writing 16
Study 32
Total 100
Validation:

Assessment methods: Two mandatory sets of assignments (30%)
and a final written exam (70%).
Assessment criteria: They are explicitly mentioned in the first
lesson and are announced on the course website.

Suggested Books:

- Recommended Book Resources:
1. Sarris I.- Karakasidis Th., Numerical Methods and Applications
for Engineers, A. TZIOLA PUBLICATIONS, Edition: 4th/ 2019.
2. Papageorgiou G. Tsitouras Ch., Numerical Analysis with applications
in MATHEMATICA and MATLAB, TSOTRAS AN
ATHANASIOS, Edition: 1st / 2015.
3. Chapra S. - Canale R., Numerical Methods for Engineers, A.
TZIOLA PUBLICATIONS, Edition: 7th / 2016.
4. AKRIVIS GD, DOUGALIS BA, INTRODUCTION TO NUMERICAL
ANALYSIS, UNIVERSITY EDITION. CRETE, Edition: 4th / 2015.

Lecturer: Tsipouras Markos




Χρησιμοποιούμε cookies για την εξατομίκευση του περιεχομένου και των διαφημίσεων, για την παροχή λειτουργιών κοινωνικής δικτύωσης και για την ανάλυση της επισκεψιμότητάς μας. Μοιραζόμαστε επίσης πληροφορίες σχετικά με τη χρήση του ιστότοπού μας από εσάς με τους συνεργάτες μας στα μέσα κοινωνικής δικτύωσης, τη διαφήμιση και την ανάλυση. View more
Cookies settings
Αποδοχή
Απόρριψη
Privacy & Cookie policy
Privacy & Cookies policy
Cookie name Active
Χρησιμοποιούμε cookies για την εξατομίκευση του περιεχομένου και των διαφημίσεων, για την παροχή λειτουργιών κοινωνικής δικτύωσης και για την ανάλυση της επισκεψιμότητάς μας. Μοιραζόμαστε επίσης πληροφορίες σχετικά με τη χρήση του ιστότοπού μας από εσάς με τους συνεργάτες μας στα μέσα κοινωνικής δικτύωσης, τη διαφήμιση και την ανάλυση.
Save settings
Cookies settings